A Reproduced Copy of NACA RM ESIHIO Reproduced for NASA by the NASA Scientific and Technical Information Facility SERVICE REPORT Handle as Restricted Data in Foreign Dissemination, Section 144b, Atomic Energy Act of 1954 NACA RM E51H10 8 B NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS DECLASSIFIED PER Desimone to Lebers Meno dotted 8/13/64 # RESEARCH MEMORANDUM MEASUREMENT OF DISTORTION IN SECOND EXPERIMENTAL CONTROL ROD FOR ARGONNE NAVAL REACTOR WITH CONSTANT TRANSVERSE TEMPERATURE GRADIENT AND UNIFORM LONGITUDINAL TEMPERATURE DISTRIBUTION By T. F. Nagey and A. F. Lietzke zke Declassified by authority of NASA 75_ Change Notices No. 75_ Classification Change Notices No. 75_ Dated ** 82+1 Lele- SUMMARY Measurements were made of the thermal distortion of a stainless-steel clad, cadmium-silver reactor control rod furnished by the Argonne National Laboratory. The temperature pattern in the rod was as follows: At each cross section, the temperature at the center of the rod was approximately 430° F and a nominal temperature difference of about 40° F was maintained between one pair of opposite tips. This transverse pattern was maintained approximately constant along the rod length. The tests were repeated with the transverse temperature gradient rotated 180° with respect to the rod. The maximum reduction in clearance caused by thermal distortion was 0.203 inch. This reduction in clearance was approximately independent of the direction of the transverse temperature gradient. ### INTRODUCTION Determinations of the thermal distortion of a stainless-steel clad, cadmium-silver core control rod for the Argonne Naval reactor were made at the NACA Lewis laboratory. The control rod was furnished by the Argonne National Laboratory. Distortion measurements with estimated temperature patterns intended to simulate certain reactor operating conditions are presented in references 1 and 2. Measurements are presented herein of thermal distortion with a temperature pattern which is not intended to simulate any particular reactor operating condition, but to show the effect of maximum transverse temperature gradients (as limited by test facilities) with constant longitudinal temperature. The control rod used in this investigation is the one discussed in reference 2. 2268 ### **APPARATUS** The test setup as used for this investigation is the same as that described in reference 2. The following paragraphs contain a brief description of the apparatus used: Control rod. - The control rod consisted of a 25-75 percent cadmium-silver core, clad with stainless steel. The rod cross section is in the shape of a cross having a span of 4 inches. The total arm thickness is 7/32 inch consisting of 1/8-inch core alloy with a stainless-steel cladding thickness of 3/64 inch. The over-all length of the rod is 53.75 inches. The rod had several cracks in the welded portions of the cross tips as reported in reference 2. These failures did not increase in size during the tests reported herein. Method of supporting control rod. - The control rod was mounted vertically with the fixed end at the bottom. The vise which holds the control rod was bolted indirectly to the mounting plate through insulating material to reduce the heat flow to the mounting plate. Strain gages were located near the clamped end to ensure freedom from initial stress while clamping. Method of obtaining temperature distribution. - The control rod was heated by a 75 KVA induction heater as in references 1 and 2. The axial temperatures were held constant by adjusting the axial spacing of the heater coil turns. The transverse temperature gradients were obtained by arranging the heater coil and control rod nonconcentrically and by a series of air jets mounted along the rod and directed toward the center of the cross. The air-cooling system is described in reference 2. Method of measuring distortion. - Distortion of the rod was measured by dial indicators as in references 1 and 2. Normally two indicators were located at each tip of the cross in five transverse stations as given in table II. The indicators were mounted on four supports which were fastened to the same mounting plate as the control rod. The supports were insulated to prevent thermal conduction and were protected from radiation. They were also instrumented in order to indicate any motion. Fused quartz rods about 12 inches in length were used to transmit the motion of the control rod to the dial indicators. The reproducibility of the indicator readings was 10.002 inch. ### RESULTS AND DISCUSSION Summary of data. - The present tests was obtained from the Argonne National Laboratory. The temperature pattern in the rod was as follows: At each cross section the temperature at the center of the rod was approximately 430° F and a nominal temperature difference of about 40° F was maintained between one pair of opposite tips. This transverse pattern was maintained approximately constant along the rod length. The test was repeated with the transverse temperature gradient rotated 180° with respect to the rod. The thermocouple locations and the corresponding surface temperatures obtained experimentally are listed in table I. As indicated in the diagrams, the distance of the transverse station from the free end of the control rod in inches is represented by Z, and the thermocouple locations at each value of Z are designated by numbers from 1 to 16. As indicated in the table, 16 thermocouples were not installed at all values of Z. The control-rod distortion resulting from the temperatures of table I are shown in table II. The displacement at each point on the rod is fixed by the values of Δx and Δy with their proper signs. The values are with reference to the unheated position of the rod. In tables I and II, run 2 is a repeat of run 1, and run 3 represents approximately the same longitudinal temperature pattern as in runs 1 and 2 with the transverse temperature gradient rotated 180° with respect to the rod. Distortion of control rod. - The displacement of the tips of the control-rod arms are plotted in figures 1 and 2. Figure 2 indicates the distortion with the same nominal temperature pattern as for figure 1, but with the transverse temperature pattern rotated 180° with respect to the rod. The distortions shown in figures 1 and 2, as to be expected, are opposite in sign. The plots indicate that the rod distorts about the same amount in either direction. Although the actual temperature patterns are somewhat different for the two tests (see table I, where runs 1 and 2 represent the pattern for fig. 1 and run 3 for fig. 2), the maximum distortion of the center of the rod agrees within 0.006 inch in the Δy direction and within 0.010 inch in the Δx direction. The maximum reduction in clearance shown in both figures 1 and 2 is about 0.203 inch. ## SUMMARY OF RESULTS The results of tests on the distortion of a stainless-steel clad, silver-cadmium reactor control rod under the influence of a constant transverse temperature gradient and a uniform longitudinal temperature distribution can be summarized as follows: NACA RM E51H10 - 1. The maximum reduction in clearance obtained in the tests was 0.203 inch. - 2. When the test was repeated with the transverse temperature pattern rotated 180° with respect to the rod axis, the amount of the reduction in clearance was unchanged. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, August 9, 1951 4 ### REFERENCES - Nagey, T. F., and Lietzke, A. F.: Measurement of Distortion in First Experimental Control Rod for Argonne Naval Reactor. NACA RM E51A30, 1951. - 2. Lietzke, A. F., and Nagey, T. F.: Measurement of Distortion in Second Experimental Control Rod with Temperature Patterns Simulating Shim Rod Out and Shim Rod 50 Percent Inserted for Argonne Naval Reactor. NACA RM E51E25, 1951. PARLE I - TEMPERATURES | | | | | | | | | The | TROCOU | ole loc | ation | | | | | ~~ | | |------------|-------------|--------------------------|---------------------------|----------------------|-------------------|----------------------|----------------------|-------------------|-------------------|-------------------|---------------------|-------------------|----------------------|---------------------------|----------------------|----------------------|------------------------| | Z
(in.) | Run | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 1 | 1
2
3 | 144
144
146
146 | 8بلدا
6بلدا
1457 | 426
433
455 | 429
431
470 | 755
755
777 | 418
425
462 | 419
412
466 | 398
404
466 | 387
366
465 | 400
386
466 | 395
387
465 | 415
414
465 | 109
101
145 | 358
369 | 426
407
459 | ويليا
بليليا
158 | | 8 | 1
2
3 | 1450
145
1450 | | | | 435
435
459 | 436
435
459 | 421
424
452 | 393
388
460 | 388
385
470 | | | | 421
408
451 | 421
407
452 | 1405
1405
1410 | 145
1425
1442 | | 15 | 1
2
3 | 451
454
430 | 452
456
430 | 1457
1427
1473 | 448
453
441 | 147
453
141 | 1453
1453
1441 | 430
437
438 | 432
456 | 430
429
460 | 416 | | 山0
山51
山7 | 1446
1450
1448 | 145
1450
1417 | 140
1450
1431 | 455 | | 22 | 1
2
3 | 1179
1121
1121 | | | | 435
432
428 | 430
433
430 | 413
420
425 | 412
409
447 | 416
395
450 | | | | 1439
1406
14014 | 369
377 | 430
406
417 | 706
757 | | 29 | 1
2
3 | 463
469
439 | 457
463
436 | 430
453
431 | 450
456
451 | 453
459
455 | 452
459
455 | 432
452
439 | 430
444
458 | 418
435
460 | 429
435
469 | 110
110
120 | 436
413
146 | 14314
14314
1448 | 137
115
145 | 435
441
439 | 457
457
435 | | 36 | 1
2
3 | 465
466
430 | | | | 1439
1414
1442 | 430
434
442 | 120
117
139 | 419
407
461 | 415
406
462 | | | | 451
4 12
451 | 450
419
447 | 441
426
438 | 455
457
425 | | 43 | 1
2
3 | 464
474
430 | 4 61
474
425 | 山7
山70
423 | 452
470
437 | 462
470
1447 | 454
479
443 | 428
439
429 | 720
777
731 | 442
449
467 | 740
7778
7130 | 437
449
430 | 1132
1161
1160 | 463
470
437 | 460
470
434 | 169
169
151 | 163
169
130 | | 50 | 1
2
3 | 457
469
423 | | | | 405
407
428 | 415
407
439 | 415
405
458 | 426
408
481 | 406
466 | | | | 410
405
432 | 1111
1121
1155 | 433
1444
1458 | 1451
1461
1417 | | | | Displace-
ment
(in.) | Cage location | | | | | | | |-------|-----|----------------------------|---------------|--------------|---------------|---------------|--|--|--| | (1n.) | Run | | 1 | 5 | 9 | 13 | | | | | 5 | 1 | Δx
Δ y | -0.007
168 | 0.00k
177 | -0.001
183 | -0.009
173 | | | | | | 2 | Δ Ξ
Δ y | 011
171 | 009
185 | 019
191 | 027
171 | | | | | | 3 | Δx
Δy | 01h
.172 | 005
.160 | 023
.152 | 022
.159 | | | | | 10 | 1 | Δ χ
Δ y | 00k
120 | .00k
127 | 009
137 | .003
118 | | | | | | 2 | Δ Σ
Δ Σ | 010
123 | .000
131 | 035
142 | 010
126 | | | | | | 3 | Δ Υ | 008
.124 | 003
.115 | 003
.108 | 016
.121 | | | | | 20 | 1 | ₹
₹ | .003
066 | .007
082 | 00k
009 | 001
077 | | | | | | 2 | Δ χ | 002
074 | 001
082 | .009
092 | 007
082 | | | | | | 3 | Δ χ | .917
.075 | .007
.06k | .006
.060 | 007
.030 | | | | | 35 | 1 | Δ χ
Δ γ | 003
031 | .006 | | 006 | | | | | | 2 | Δ y | 008
031 | -008 | | 008 | | | | | | 3 | Δ χ
Δ y | .018
.021 | .009 | 001 | 003 | | | | | \$2 | 1 | Δz
Δy | .001 | .003 | -,010 | 003 | | | | | | 2 | Δx
Δy | -,002 | •005 | 006 | 001 | | | | | | 3 | Δx
Δy | .002 | .005 | 005 | 008 | | | | Figure 1. - Distortion of control rod with maximum temperature occurring at station 1. Runs 1 and 2. Figure 2. - Distortion of control rod with maximum temperature occurring at station 9. Run 3. (b) Variation of Δx with Z.